请升级浏览器版本

你正在使用旧版本浏览器。请升级浏览器以获得更好的体验。

Research Progress

Research Progress

Current Position: HOME > Research Progress

Associate Professor Weina Zhang et al.published a paper titled "Cooling radiative forcing effect enhancement of atmospheric amines-mineral particle caused by heterogeneous uptake and oxidation" in ACP

Release date:2024-08-30    Author:     Source:     Click:

《Cooling radiative forcing effect enhancement of atmospheric amines-mineral particle caused by heterogeneous uptake and oxidation》

Websitehttps://egusphere.copernicus.org/preprints/2024/egusphere-2024-1048/

Graphical Abstract

Abstract

Warming radiative forcing effect (RFE) derived from atmospheric amines attracts lots of attentions because of their contributions to brown carbons. Herein, the enhanced influence of amines (methyl-, dimethyl-, and trimethylamine) on cooling RFE of mineral particles is first confirmed at visible wavelengths. Present results state heterogeneous uptake and oxidation reactions of atmospheric amines are feasible on mineral particle at clean/polluted conditions, which are proofed by related thermodynamics and kinetics data obtained using combined classical molecular dynamics and density function theory methods. Based on mineral particles, simple forcing efficiency (SFE) results explain that amine uptake induces at least 11.8% – 29.5% enhancement on cooling RFE of amine-mineral particles at visible wavelengths. After amines’ heterogeneous oxidation, oxidized amine-mineral particles’ cooling RFE are furthermore enhanced due to increased oxygen contents. Moreover, oxidized amine-mineral particles under clean condition shows 27.1% – 47.1% SFE increment at 400-600 nm, which is at least 11.3% higher than that of itself under polluted condition, due to high-oxygen-content product formation through amine autoxidation. Our results suggest cooling RFE derived from atmospheric amines can be equally important to their warming RFE on atmosphere. It is necessary to update heterogeneous oxidation mechanism and kinetics data of amines in atmospheric model in order to accurately evaluate the whole RFE caused by amines on atmosphere.