首页

科研进展

当前位置: 首页 > 科研进展 > 正文

我室博士后彭灵慧等在ACB杂志上发表“双功能耦合过滤器:非尺寸依赖捕获及光催化杀灭生物气溶胶”的最新学术论文

发布日期:2023-03-08              点击:

近日,广东工业大学环境健康与污染控制研究院、环境科学与工程学院安太成教授团队在光催化消杀生物气溶胶方面取得最新研究进展,研究成果以《Photocatalytic inactivation of airborne bacteria onto g-C3N4/TiO2/Ni-polydopamine/Ni bifunctional coupling filter with non-size dependent capture effect》为题发表在Applied Catalysis B: Environmental (2023, 329, 122580)期刊上。论文的第一作者为博士后彭灵慧,通讯作者为安太成教授。在这项工作中,团队设计了一种非尺寸依赖捕获与原位光催化杀灭双功能的生物气溶胶过滤器。该工作系统地探究了该双功能过滤器对生物气溶胶的捕获与光催化杀灭性能,同时研究了生物气溶胶的浓度、流速、光强等实验条件对其性能的影响。揭示了该双功能生物气溶胶过滤器对生物气溶胶的捕获效率和灭活效率的构效关系,阐明了聚多巴胺修饰增强过滤器的捕获性能,而g-C3N4/TiO2光催化剂提供微生物的杀灭功能,提出了相应的非尺寸依赖捕获与光催化灭活机制。该研究为实际环境中生物气溶胶的高效灭活提供了一种新的控制策略。

论文的网址: https://doi.org/10.1016/j.apcatb.2023.122580

大多数商用空气净化器依赖于致密的纤维过滤膜来捕获生物气溶胶,这种过滤器通常基于过滤膜的孔径尺寸,依赖分筛效应捕获生物气溶胶,孔径小、压降大、易堵塞,并且不具备杀菌功能。基于此,团队设计并研制了一种由g-C3N4/TiO2负载和聚多巴胺(PDA)修饰的双层耦合泡沫镍的双功能生物气溶胶过滤器。该双功能生物气溶胶过滤器在12.5 L min-1的高气流条件下,生物气溶胶的去除效率可达93.5%,压降仅为1000 Pa,同时连续灭活效率达70.0%。且随着辐照时间的延长和光强的增强,生物气溶胶的灭活率可进一步提高到99.99%。实验结果表明:该生物气溶胶过滤器的非尺寸依赖捕获效应是由PDA的粘附力和电荷共同赋予的。此外,通过拉曼光谱结合化学发光的联用检测方法,证明了光催化活性氧物种在空气中产生及传递,并对生物气溶胶的灭活起到了至关重要的作用。这项开创性的研究可能为开发非尺寸依赖的捕获和光催化灭活生物气溶胶双功能过滤器提供新的应对策略。

图文摘要

英文摘要

Most commercial air purifiers rely on dense fibrous filters for bioaerosols control, which filter the particulate matter size-dependently without bactericidal activity. Herein, the non-size-dependent bifunctional nickel foam filters (g-C3N4/TiO2(CT)/Ni-polydopamine(PDA)/Ni bifunctional filter) with two layers of coupling nickel foams deposited by CT and PDA, respectively, were developed. The bifunctional filter shows remarkable non-size dependent bacteria removal efficiency of 93.5% and inactivation efficiency of ~70% within 20 min at high airflow of 12.5 L min-1. The inactivation efficiency can be further increased to 99.99% with prolong irradiation time and enhancement of light intensity. The non-size dependent capture effect of the CT/Ni-PDA/Ni provided by adhesive force and charge was verified. In addition, the assumption that reactive oxygen species (ROSs) could be transferred into air during bacteria inactivation was first proved by chemiluminescent. This pioneered study may provide new insights into the development of bifunctional filters for non-size dependent capture and photocatalytic inactivation of bacteria in bioaerosols.

上一条:我室与法国里昂催化与环境研究所合作在PNAS上发表最新学术论文
下一条:我室硕士生张思梦等在EI上发表“电子垃圾拆解区周边室内外生物气溶胶分布特征及其风险削减研究”的最新学术论文